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How did full meiotic eukaryotic sex evolve and what was the immediate advan-

tage allowing it to develop? We propose that the crucial determinant can be

found in internal reactive oxygen species (ROS) formation at the start of

eukaryotic evolution approximately 2 � 109 years ago. The large amount of

ROS coming from a bacterial endosymbiont gave rise to DNA damage and

vast increases in host genome mutation rates. Eukaryogenesis and chromo-

some evolution represent adaptations to oxidative stress. The host, an

archaeon, most probably already had repair mechanisms based on DNA pair-

ing and recombination, and possibly some kind of primitive cell fusion

mechanism. The detrimental effects of internal ROS formation on host

genome integrity set the stage allowing evolution of meiotic sex from these

humble beginnings. Basic meiotic mechanisms thus probably evolved

in response to endogenous ROS production by the ‘pre-mitochondrion’.

This alternative to mitosis is crucial under novel, ROS-producing stress

situations, like extensive motility or phagotrophy in heterotrophs and

endosymbiotic photosynthesis Qin autotrophs. In multicellular eukaryotes

with a germline–soma differentiation, meiotic sex with diploid–haploid

cycles improved efficient purging of deleterious mutations. Constant pres-

sure of endogenous ROS explains the ubiquitous maintenance of meiotic

sex in practically all eukaryotic kingdoms. Here, we discuss the relevant

observations underpinning this model.
1. Introduction
The so-called paradox of sex represents one of the most intriguing problems of

evolutionary biology [1,2]. Sex in eukaryotes is a composite process, consisting

of meiosis and fertilization (or, more generally, ‘mixis’, the process of fusion of

cells and nuclei), which can be coupled to reproduction [3]. Sexual reproduction

can be defined as ‘a process in which the genomes of two parents are brought

together in a common cytoplasm to produce progeny that may then contain

re-assorted portions of the parental genomes’ [2]. This definition can be relaxed

to also include autogamy (self-fertilization), which must be seen as a derived

trait, retaining meiosis. Meiosis–mixis cycles are seen as ancestral and

conserved features of eukaryotes [4–6].

Altogether, eukaryotic sexual reproduction is a risky, time- and energy-

consuming process. Meiosis can break up favourable gene combinations and

meiosis itself seems to correlate with higher inviability among potential offspring

[7–10]. Recombination at meiosis occurs blindly, chancing new gene combi-

nations in offspring, while recombinant offspring is not necessarily selected for

[1]. Mixis entails the cost of a second individual needed for reproduction, with

the associated efforts of mate location, conjugation and risks of incompatible

mating often leading to inviable or infertile offspring [8,9]. Without sex, a

single individual could propagate, avoiding density-dependence of individuals.

If only one parent (a ‘female’) is capable of producing offspring, as found in

most animals, then asexual females could double their progeny (‘cost of males’,

[8]). Again, such considerations do not apply in the case of autogamy.
entioned
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Numerous hypotheses have been proposed for the mainten-

ance of sex [1,2,11]. Several authors have suggested that the

benefits of sex could be found in the repair of damaged

DNA [2,12–14], mutation elimination by selection on recombi-

nant offspring [15,16] or restoration of cytosine methylation

patterns during meiosis [17]. All these theories offer something,

but on their own seem unconvincing, relying on combinatio-

nal effects and being dominant in certain groups of extant

eukaryotes only [18]. Here, we try to reconstruct a likely evol-

utionary order of events, taking into account physiological

and biochemical constraints of eukaryotic life.

Repair of chemically altered DNA offers itself as the

primary force, as it constitutes an immediate cellular con-

straint; transcription and replication cannot proceed with

chemically damaged DNA [13]. DNA damage is mostly

caused by reactive oxygen species (ROS) and includes modifi-

cation by oxidation, resulting in single- and double-strand

breaks (DSBs), and formation of DNA adducts and cross-

links [19]. Crucially, single ROS initiation events can generate

multiple reactions and radical molecules by complex chain

reactions (mostly catalysed by metal cations in Fenton reac-

tions) that affect all cell components [20]. ROS, except for

H2O2, have extremely short half-lives. However, they almost

always initiate chain reactions of cell (even tissue-wide) oxi-

dations, the specificities of which depend on the chemical

environment [21]. The absence of DNA repair can be lethal

immediately, whereas an incorrect base repair will lead to

mutations (stable changes in the sequence of DNA base pairs

[22]). Mutations can efficiently be eliminated or favoured by

Darwinian selection (genetic drift being ‘blind’). A tiny fraction

of mutations turns out to be positive, but most are neutral or

negative, ranging from mildly disadvantageous to deleterious.

Selection against accumulation of deleterious mutations is

most efficient among recombinant offspring [15]. However,

this is not an immediate, but a more long-term effect, strongly

modulated by group-size, severity and epistatic interactions of

mutations [16].

We postulate that initial endogenous ROS formation by the

endosymbiont and resulting DNA damage in early stages of

eukaryogenesis could have triggered meiosis–mixis cycles.

Subsequently, high-energy metabolism (involving respiration

and photosynthesis) and developments based on adapta-

tions to effects of endogenous ROS production were among

forces giving rise to (complex) multicellularity with germ-

line/soma differentiation. At this stage, elimination of

mutations by purifying selection added a major advantage of

sex for multicellular, long-lived, diplontic or diplohaplon-

tic life cycles [23]. Eventually, meiotic resetting of DNA

methylations became important, especially for complex

multicellular metazoans. At this point, we should stress that

parts of this ‘ROS-sex’ hypothesis are much debated and not

yet (?) universally accepted.
2. Did endogenous oxidative stress trigger sex at
the origin of the eukaryotes?

(a) How did eukaryotes end up burdened with
meiosis – mixis cycles?

Considering genetic variability and adaptive potential, prokar-

yotic forms of gene exchange (plasmid-mediated conjugation,

phage-mediated transduction and transformation [24]) have
RSPB20172706—22/1/18—18:01–Copy Edited by: Not Mentioned
allowed an enormous quantity of hugely diverse organisms

to evolve. Prokaryotes are highly adaptive, exhibit numerous

trophic forms and have colonized a tremendous variety of

habitats on our planet. Having network-like ‘pangenomes’,

prokaryotes can transfer genetic material from one individual

to another, unrestricted by meiosis–mixis cycles, resulting

in countless gene combinations [25]. Selection can act effi-

ciently on the huge genetic diversity present, due to large

prokaryotic population sizes. This results in survival and

adaptation of strains to novel environments, as illustrated by

rapid evolution of antibiotic resistance in pathogenic bacteria.

To maintain genetic variability, a meiotic process seems

superfluous in this case.

But with eukaryotes, the rules of the game change. They are

mostly limited to vertical inheritance with gene exchange

restricted to genetically very similar individuals [25]. Wilkins &

Holliday [26] suggested that meiosis, in fact, may have evolved

to restrict recombination events rather than promote them, and

Bernstein et al. [12] were among the first to show that most

meiosis events do not result in recombination. Also, mutation

accumulation (think ‘Muller’s ratchet’) does not seem a

strong argument for starting with meiosis—prokaryotes have

their own antioxidant defences (see, e.g. [27] and, even more

importantly, detrimental prokaryotic mutations are effectively

purged from large populations). However, in eukaryotes,

Muller’s ratchet is a much bigger problem (see below).

The origin of sex might have been the appearance of

meiosis as a superior nuclear DNA repair mechanism in the

wake of rising oxygen levels in the Earth’s atmosphere in the

Proterozoic, caused by oxygenic cyanobacterial photo-

synthesis. Oxygenic photosynthesis evolved earlier, in the

Archaean, with several markers first appearing approximately

2.5 � 109 years ago [28]. Oxygenic photosynthetic organisms

use light energy for photochemical oxidation of water, releas-

ing oxygen, to generate chemical energy (ATP) and reduction

equivalents (NADPH). Both are required to synthesize carbo-

hydrates in the Calvin cycle, beginning with CO2 fixation,

catalysed by Rubisco. Oxygen, the waste product of photosyn-

thesis, thus became enriched in the atmosphere and in bodies

of water [29]. Some heterotrophic alpha-proteobacteria mana-

ged to link the breakdown of organic matter to short-chained

organic acids with their further oxidation by aerobic respir-

ation, giving CO2 and water as waste, while the energy thus

gained is stored as ATP. Both photosynthesis and respiration

involve complex electron-transfer chains that secure the

transfer of four electrons. Accidental one-electron transfers

generate highly ROS in intermediate steps of the chemical

reactions [20], simplified as follows:

Respiration: O2 þ e� ! O��2 þ e� ! H2O2 þ e� ! OH�

þ e� ! H2O (energy gain)

Photosynthesis: H2O� e� ! OH� � e� ! H2O2 � e� ! O��2
� e� ! O2 ðenergy input from lightÞ:

The different ROS are: O��2 , superoxide radical; H2O2,

hydrogen peroxide; OH�, hydroxyl radical.

For overviews of the reactions in ROS and reactive nitro-

gen species chemistry, see [30] and chapter 6 in [31].

In our view, eukaryogenesis started when an Archaean

host (or merging Archaeons; as hypothesized in [32]) estab-

lished endosymbiosis with free living, (facultatively) aerobic

alpha-proteobacterium-like organisms which became mito-

chondria in an example of syntrophy (figure 1). How uptake
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Figure 1. Possible steps describing eukaryotic origins and evolution of meiotic sex. The specific timing is arbitrary (e.g. meiotic sex probably evolved before pha-
gocytosis). (1) Cell fusion of Archaeon and alpha-proteobacterium; (2) Establishment of endosymbiosis with aerobic respiration, efficient energy generation and
internal ROS production; (3) Remodelling of membranes, origin of peroxisomes, transition to linear host chromosomes, chromatin, transfer of genes from mito-
chondrial genome to host genome and RNA splicing; (4) Endogenous evolution of nuclear envelope for protection from short-lived ROS, spindle formation for
moving bulky linear chromosomes, establishment of mitosis, mitochondrial ATP production allowing increase of body size (and phagocytosis?); (5A) Novel
stress situations with ROS (H2O2) production and increase in nuclear DNA damage: e.g. high motility, phagotrophy, endosymbiosis with cyanobacteria Q9(* the
first plastid acquisition is difficult to date, but probably earlier than previously thought, [33,34]); (5B) Mitosis and clonal growth as an alternative mode of repro-
duction under favourable conditions; (6) DNA damage triggers cell and nuclear fusions in various combinations, leading to early eukaryotic, mostly mixotrophic,
panmictic (?) populations; (7) Meiosis I established as HR DNA repair tool, homologous pairing established by controlled DSB formation, lineage-specific spo11
evolution; (8) Meiosis II and establishment of diploid – haploid cycles. (Online version in colour.)
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took place is unclear. We will not discuss proposed mechan-

isms, but we consider primitive forms of phagocytosis

unlikely [35]. Later, endosymbiosis with photosynthetic

cyanobacteria resulted in plastids [25,36–38].

The first eukaryotes benefitted from the high-energy gain

of aerobic metabolism (and the occasional photosynthesis),

allowing further cellular complexity and larger size, but

suffered from severely increased internal ROS production

[6,38,39]. Transcription and replication open double-stranded

DNA, with single strands coming under oxidative attack,

potentially causing breaks and other lesions [22,40]. We con-

tend that meiotic sex evolved in the context of endogenous

ROS production by the pre-mitochondrion, with homologous

DNA repair as its initial starting point. Other (not mutually

exclusive) models also trace the origin of meiotic sex to the

first endosymbiont appearance (cf. [6,41,42]). Another impor-

tant ‘ROS response’ could have been nuclear membrane

development, surrounding the host genome, made from

secreted endosymbiont vesicles [43]. The availability of abun-

dant ATP from oxidative respiration for membrane formation

is another argument for the endogenous origin of a nuclear

envelope [42]. The nuclear envelope might have protected

the host genome from oxidative stress due to organelle-

derived ROS (see also [44–46]). Endogenous ROS probably

also contributed to the evolution of a eukaryotic cell cycle:

unlike in prokaryotes, transcription, DNA synthesis and cell

division proceed in separated phases (though Archaea, inter-

estingly, are more ordered in this respect [47]). While not

central to the ‘ROS-sex’ hypothesis, others have proposed

further benefits or consequences of nuclear membrane

formation. For instance, the nucleus also allowed mRNA

splicing before export to the cytosol and translation [48]. Endo-

symbiosis further led to transfer of many organellar genes to

host genomes [25,49,50] and the development of new orga-

nelles such as peroxisomes (see below). A further large

increase of host genome DNA length was due to concomitant

intron integration [48]. This expansion of the host’s genome

may have been a factor in the appearance of linear chromosome

structures, which can maintain larger (repetitive) genomes

more efficiently than ring-like ones [51].

Further innovations leading to mitosis and meiosis were

the organization of DNA in chromatin, in linear chromosomes

with kinetochores and a division mechanism with a spindle

apparatus. The long eukaryotic DNA strands are densely

packed in nucleosomes, i.e. DNA is wrapped around histones.

Strikingly, Archaea possess histones [52]. This predisposition

allows that, with only a few steps for the concerted evolution

of chromosome condensation, nucleosome and centromere

formation, eukaryotic chromosome structures could have

evolved [53]. In the first eukaryotic cell divisions, nuclear

membrane components may have helped to separate chromo-

somes, while the nuclear spindle emerged at later stages

[32,54]. Eukaryotic chromatin became bulky, and a more effi-

cient mechanism using microtubules was needed to pull

chromatids apart. Microtubuli have the same structure as

eukaryotic flagellae (‘undulipodia’ sensu, [3]) which simply

points at the evolution of a general, robust, tear-resistant mech-

anical structure in early eukaryotes. Tubulin homologues and

SMC (structural maintenance of chromosome) proteins had

already evolved in prokaryotes [26]. The mitochondrion

provided the copious amounts of ATP required for microtu-

bule and nuclear spindle formation [42]. As we argue that

meiotic sex originated and ‘matured’ in the context of internal
RSPB20172706—22/1/18—18:01–Copy Edited by: Not Mentioned
pre-mitochondrial ROS formation, coordinated cell/organelle

division should be ancient. Organellar inheritance in eukar-

yotes is dominated by uniparental organelle inheritance

(UPI). A detailed hypothetical evolutionary scenario resulting

in UPI is given in electronic supplementary material, S1. Orga-

nellar DNA is protected from permanent ROS damage by

specific antioxidant enzymes such as superoxide dismutase

and glutathione transferase [55], by using gene conversion as

a DNA repair mechanism [56,57] and by transfer of many

genes to the nucleus (see above), while genes encoding some

of the hydrophobic core subunits of the large membrane com-

plexes are kept, possibly to maintain redox control [58,59].

Moreover, purging selection can act on large populations of

organelles inside most modern eukaryotic cells and remove

malfunctioning ones.
3. Sources of endogenous oxidative stress in
heterotrophic and autotrophic eukaryotes

Meiosis and mitosis probably evolved concurrently in early

eukaryotes [4]. Mitosis probably was the main process for

clonal reproduction under favourable conditions, while meio-

sis represented an occasional modification of mitosis acting

under DNA-damaging stress conditions (figure 1). Correlation

of meiosis with oxidative stress was demonstrated in many

extant eukaryotic groups exhibiting facultative sexuality/

asexuality [60–64]. Upon increased competition between

eukaryotes, tiny innovations to obtain food were positively

selected, culminating in full-scale phagocytosis. Larger body

size and the availability of mitochondrion-derived ATP

allowed many eukaryotic lineages to become phagocytotic

later on [35]. However, phagocytosis might renew physio-

logical stress. Additional ROS could, for example, have arisen

from extraordinary high mobility, when mitochondrial ATP

production had to be rapidly intensified to allow intense flagel-

lar movement, in competition for organic molecules (or

escaping an adverse environment). Interestingly, incomplete

non-digestive phagocytosis of cyanobacteria might have led

to photosynthetic (i.e. autotrophic) eukaryotes. Photosynthesis

has its own sources of, surprisingly high, endogenous oxi-

dative stress (an extensive overview of which is given in

electronic supplementary material, S2), which explains the

need of meiotic sex in autotrophic (or mixotrophic) eukaryotes.

A further potential source of ROS production in phago-

trophic eukaryotes was food rich in proteins and very long

saturated fatty acids, the main component of membranes,

requiring breakdown by b-oxidation. In mitochondria, the

respiratory chain seems optimized to use glucose as a sub-

strate; b-oxidation would be energy-efficient but leads to ROS

formation [65]. This aspect (b-oxidation, occurring prior to

phagocytosis) probably triggered the evolution of novel

organelles, peroxisomes, performing b-oxidation without

concomitant mitochondrial ROS formation. The H2O2 gener-

ated instead is efficiently scavenged inside the organelle by

catalase [65]. Recently, it was found that in human fibroblasts

without peroxisomes, peroxisomal import receptors Pex3 and

Pex14 go to mitochondria and are subsequently released in

pre-peroxisomal vesicles (again stressing their postulated evol-

utionary link). These vesicles fuse with Pex16 containing

endoplasmatic reticulum (ER)-derived vesicles, giving rise to

peroxisomes (defined as vesicles capable of import of peroxiso-

mal proteins) [66]. Whether peroxisomes evolved prior to the
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ER, or concomitantly, is not clear. We previously described

peroxisome evolution in the context of phagocytosis, but

peroxisomes (and ER?) probably evolved earlier: directly on

the heels of the uptake of the pre-mitochondrion and the inte-

gration of host and endosymbiont metabolic pathways [67], as

illustrated by the many ‘new’ transporter systems they share

with mitochondria [68].
blishing.org
Proc.R.Soc.B

20172706
4. Evolution of meiosis as a response to
oxidative damage

H2O2 can arise from many eukaryotic metabolic processes,

easily penetrates (nuclear) membranes and reacts in the

presence of transition metals (especially iron), using so-called

Fenton chemistry, to produce extremely aggressive hydroxyl

radicals [20]. Eukaryotic nuclei, especially nucleoli, have high

iron concentrations [69]. Hydroxyl radicals are especially

dangerous for DNA as they can lead to tandem lesions [70].

Thus, cells need to react with, for example, oxidatively damaged

peptides functioning as secondary ROS messengers entering

the nucleus [71]. One could speculate that in early phases of

eukaryotic evolution, ROS-induced DSBs of the host’s DNA

and incomplete repair of these breaks could have caused the

transition from a single Archaeal ring-like chromosome to sev-

eral shorter, linear chromosomes, characteristic of eukaryotes.

Linear ends have to be protected against exonuclease activity,

necessitating telomere restoration to allow full replication. As

proposed by Garavis et al. [72], early eukaryotes could have

‘solved’ this end replication problem using G-quadruplexes

and retrotransposon activity. Moreover, linear chromosome

structures can be better aligned for precise homologous recom-

binational (HR) repair than ring-like chromosomes [51],

fitting in with more efficient DNA repair mechanisms coping

with ROS-produced damage upon the merger leading to the

eukaryotic lineage.

The main novelty of meiosis compared to mitosis is homol-

ogue pairing and synapsis at prophase I [26], and here HR

repair of DSBs during meiosis occurs [73]. Homologous recom-

binational repair using a second, homologous DNA molecule

is the most accurate and least mutagenic DNA repair mechan-

ism [22]. Cell fusion could have provided a mechanism in early

eukaryotic evolution to get this second homologous DNA mol-

ecule. By merging and combining nuclear genomes, similar

chromosomal structures could align, and HR repair established

in the eukaryotic zygote. Indeed, Archaea were probably

already capable of cell fusion [42]. Whether it occurred regu-

larly or not, one might speculate that loss of archaeal electron

transport chains and their associated membrane potentials in

evolving eukaryotes [38] made it easier. Archaea thus might

have been predisposed to mixis. Archaeal DSBs can be induced

by exogenous oxidative stress caused by UV light or chemicals

[32]. Furthermore, all Archaean DNA repair proteins required

for HR repair of DSBs were available, forming the homologues

of core meiotic proteins [5,74]. Only proteins for chromosomal

homology search and binding seem absent [5]. But, homology

search and synapsis must have rapidly been established (selec-

tion acts strongly against recombinational errors caused by

non-homology [26]). Even the endosymbiont could have con-

tributed to homology searching, as stress-induced genome

condensation leads to non-random convergence of sister

chromosomes culminating in spatial proximity of homologous

sites in bacteria [75]. If internal ROS creates an environment in
RSPB20172706—22/1/18—18:01–Copy Edited by: Not Mentioned
which tiny steps towards meiotic sex are selected for, why

did it not evolve in the mitochondria themselves? The specific

archaeal ‘predispositions’ possibly explain this, and large-scale

migration of endosymbiont genes to the protected nuclear

environment quickly started to function as an efficient

alternative protection against ROS-induced damage.

This first HR repair in zygotes was probably the precursor

of prophase I of meiosis. Indeed, in all extant eukaryotes

studied so far, prophase I is the most conserved and least dis-

pensable step in various forms of meiosis modifications in

different forms of reproduction [76]. In contrast with bacterial

transformation, meiosis-like repair was reciprocal, as both

fusing individuals had an immediate selective advantage:

rescuing their genomes [51]. Hence, mixing cells had just to

combine pre-existing mechanisms of Archaea, i.e. cell fusion

and existing HR DNA repair tools, to repair chromosomes.

Further steps of meiosis mostly just represent modifications of

mitosis: alignment of chromosomes in metaphase I; separation

of homologous chromosomes at anaphase I without centromere

splitting and absence of sister chromatid separation, possibly

causally linked to suppression of the synthesis-phase after

meiosis I [26]. Meiosis II is just a mitosis and regenerates hap-

loidy, and this way the first meiosis–mixis cycles could have

been established. The regular establishment of diploid–haploid

cycles probably happened later, mostly in multicellular eukar-

yotes. The diversity of meiosis variants in protists supports

the hypothesis of a stepwise establishment process with many

experimentations [77]. Meiotic recombination with its typical

extant features (e.g. synaptonemal complexes) probably

evolved after establishment of meiosis–mixis cycles [26].

Looking at the evolution of mitosis and meiosis–mixis

cycles retrospectively (figure 1), it might seem surprising that

so many novel processes and structures were combined, and

that intermediate forms are largely missing. However, by com-

bining complete genomes (initially paired just for HR DNA

repair), and by introducing reciprocal recombination events,

sex could rapidly exchange and fix the gene combinations that

encode proteins for all kinds of ‘new’ eukaryotic features

(e.g. nuclear envelope, cell cycle, mitosis and meiosis) in the

offspring. Hence, the successful combination of features could

spread much faster in sexual populations than any single

innovation that might have appeared in mitotic lineages.

With meiotic sex, eukaryotes gave up rapidly producing

novel genotypes the way prokaryotes do (less new features

coming from horizontal transfer), but they gained a reproduc-

tive system that allowed efficient generation and vertical

inheritance of powerful combinations of molecular features.
5. Sex, multicellularity and evolution of
complex organisms

Many unicellular eukaryotes can persist without meiotic sex

over very long periods, though real clonality seems to be

extremely rare even in single-celled organisms [3,6]. Even

pathogenic microbial eukaryotes require sex as a genomic

repair tool upon encountering the host’s defence [78]. Unicel-

lular eukaryotes face the problem that meiosis is a time and

energy-consuming process, lasting several hours in which

other cellular activities have to be put on hold. Moreover,

having just one nucleus means that an erroneous meiosis

probably is lethal for offspring. The first problem is some-

times met by differentiating two nuclei, one vegetative
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macronucleus for protein–transcription and cell functions

and one generative micronucleus for meiosis and reproduc-

tion (e.g. in extant ciliates like Tetrahymena, [79]). Mixis, as

the second component of sex, requires reachable mating part-

ners with homologous genomes, but small organisms cannot

move far. Small body size could make sex costly [9]. With

regard to multicellular organisms, many arguments rather

speak for a regular use of meiotic sex: (i) the fossil record;

(ii) the advantages of sex for multicellular development

starting from single-cell stages; (iii) the advantages of a

germline–soma differentiation, such as allowing multicellu-

lar organisms to restrict ROS-producing functions as much

as possible to somatic cells (e.g. [58,80] and references therein;

electronic supplementary material, S3).

The oldest multicellular fossil with morphological struc-

tures indicative of sexual reproduction is the red algae-like

Bangiomorpha pubescens [81]. This organism developed multi-

cellularity from single-cell stages via mitotic divisions before

forming structures for sex [81]. Multicellular life forms

evolved many times, and multicellularity is not restricted to

eukaryotes [82]. Multicellularity provides many advantages,

e.g. protection against predation, efficient food consumption,

facilitating dispersal and division of labour among cells.

Simple cellular colonies start with benefits from an increased

buffering of physical and biological environmental influences,

and from intercellular metabolic exchange [83]. However, mul-

ticellular prokaryotes lack central developmental programmes,

and thus remain without significant cell differentiation [82].

Complex multicellular eukaryotes differentiate an immortal

germline from a mortal somatic line [18]. Only the germline

needs meiotic repair (see details in electronic supplementary

material, S3).

Although early eukaryotes managed to keep ROS pro-

duction under control with various mechanisms, they could

not scavenge ROS completely, a feat nearly impossible to

accomplish [27]. Making a virtue of necessity, ROS emission

probably was used early on for signalling from the organelle

to the nucleus in the service of metabolic adaptations. Later

on, positive effects in cell differentiation, as well as in stress

responses, such as encountered upon microbial pathogen,

attack turned out to be valuable [20,21,84,85]. The danger of

intra-nucleate oxidative damage of DNA persisted, but prob-

ably rather in the formation of local DNA damage than in

causing direct DSBs, the former being much more frequent

than the latter [22]. Hence, prophase I of meiosis could have

been optimized for conducting HR repair of the more frequent

minor lesions (e.g. due to local DNA radicals) in germline cells

[86]. Certain spo11 orthologues (which probably evolved ear-

lier as a radical-scavenging enzyme in Archaea) induce

meiosis-specific DSBs in all eukaryotic kingdoms [73]; in pro-

tists, e.g. in the ciliate Tetrahymena [79]. Spo11 action results

in a controlled DSB formation which is afterwards repaired

[73,86]. In most extant multicellular eukaryotes, a minimum

of one spo11-induced DSB is needed to initiate meiosis and

to guarantee correct segregation [87]. Meiotic DSB breaks do

not occur randomly, but in hotspots; in mice, they are mostly

found in between methylated nucleosomes [88]. Maybe these

regions are less protected against oxidative damage (in line

with the idea that eukaryotic chromosomal structures came

about because of internal ROS pressure)? Whatever the truth

of this supposition, many more DSBs are made than are later

on repaired via a crossing-over pathway, which speaks in

favour of the repair function rather than for a teleological
RSPB20172706—22/1/18—18:01–Copy Edited by: Not Mentioned
‘purpose’ of recombination [86]. This costly HR DNA repair

is primarily reserved for immortal germline cells, while

accumulation of oxidative damage and mutations derived

from non-HR repair in somatic cells is an important factor in

ageing and death [89] (see also electronic supplementary

material, S3). A rare exception are asexual bdelloid rotifers

which exist for millions of years without meiotic sex by

using extraordinary efficient antioxidant systems and gene

conversion to eliminate mutations [90].

DNA repair happens at meiosis I, but it cannot explain

meiosis II and reductional division. Here, heritable mutations

as an indirect consequence of oxidative stress come into

play [18]. Mutation accumulation does not play a major role

during prokaryotic evolution—defective mutants are rapidly

purged by selection, and slightly deleterious mutations can

never start to dominate the population as effective bacterial

population size is large. However, Muller’s ratchet depends

on mutation rate and genome size, both increasing dramatically

upon the merger that gave rise to the eukaryotes, as well as

effective population size, (strongly) decreasing in eukaryotes

(as is to be expected, based on their higher energy needs).

These problems (more damage, larger genomes and small

populations) increase even further in complex multicellular

organisms with prolonged lifespans. Mutations can accumulate

over generations: first, mutations in germline cells would not

immediately affect the viability of the whole parental organism;

second, in diploid or polyploid nuclei, i.e. in zygotes, reces-

sive deleterious mutations can remain masked by unmutated

gene copies protecting the mutation from purging selection

(i.e. heterosis) [23,91,92]. Complex multicellular organisms are

diplontic or diplohaplontic (animals and vascular plants,

respectively) and do their somatic differentiation in the ‘buf-

fered’ diplo-phase. Diploidy (and polyploidy) can be a result

of mixis. However, in the long run, a continued increase of

genome size by continuing cell fusions is problematic: space

in the nucleus and resources for synthesis of larger amounts

of DNA are limiting factors [93]. Moreover, outcrossing via hap-

loid gametes promotes heterosis as a beneficial effect. In the

light of these considerations, reductional divisions are favoured

by selection to reduce ploidy levels.

Theoretically, meiosis is an efficient mutation purging

mechanism of ‘masked’ deleterious mutations due to the

return to a haploid phase in gametes, because selection acts

more efficiently on haploids [94]; in multicellular organisms,

selection can act on the haploid, recombined products of

meiosis (gametes or in plants, gametophytes) and eliminate

mutants [18,95–97]. Theoretical models revealed that surpris-

ingly little recombination resulting from facultative sexuality

is sufficient to counteract mutation accumulation [98]. Gene

conversion, the more frequent product of prophase I, is

even more efficient as mutations become homozygous and

fully exposed to purging selection [90,99]. Gene conversion

might also prevent mutation accumulation in non-recombin-

ing genomes like plastids and mitochondria [56,57].

In multicellular, differentiated, organisms, the DNA restor-

ation mechanism of resetting cytosine methylation status

during meiosis [17] came into play. In animals and plants,

DNA methylation regulates epigenetic silencing of gene

expression and control of transposable elements, and hence is

important for tissue differentiation [100]. The detailed mechan-

isms of meiotic resetting and transgenerational inheritance of

methylations are complex and differ between plants and ani-

mals [101]; it would be outside the scope of this paper to
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treat this topic in detail. We just mention one point here that

meiotic resetting of methylation profiles makes sense for

germ line cells and cells undergoing differentiation, but not

for differentiated somatic cells that have lost their totipotency

during development.
4
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6. Some remarks on Darwinian evolution and
conclusion

One of the many observations strongly supporting Darwin’s

evolutionary model is the strange mixture of adaptive and see-

mingly useless features of organisms we find in abundance.

These reflect historical contingencies that earlier traits, once

selected for, but now hampering optimality, represent. Here,

we can encounter quite a few examples, operating at different

levels. We think that it worthwhile to mention just two. (A)

Cyanobacteria produced large amounts of oxygen via photo-

synthesis, irreversibly changing the environment. Their

descendants, chloroplasts, do so inside the cell, raising O2/

CO2 ratios. The resulting photorespiration (Rubisco-binding

O2) produces ROS and wastes energy. (B) We think that

internal ROS formation and DNA damage gave rise to ‘expens-

ive’ meiotic sex, which organisms tend to discard only under

certain circumstances when the meiosis–mixis cycle is dis-

rupted, e.g. after hybridization or polyploidization [18]. How

many of the independently evolved clonal lineages are stable

over longer timescales remains to be seen [2,6].

This dynamic process of having to adapt to the constantly

changing environment resulting from other organisms adapt-

ing makes evolutionary reconstruction both very exciting and

very challenging. We think that meiotic sex is ‘a consequence

of oxygen’, because there are many indications that it started

out as a repair mechanism for internal, constant ROS-induced

DNA damage and elimination of heritable mutations,

along the lines we sketched, but realize that many in the

field are not convinced, precisely because it is so deeply

buried under layers of later adaptations. We show that the

physiology of eukaryotes caused novel, ROS-producing
RSPB20172706—22/1/18—18:01–Copy Edited by: Not Mentioned
stress situations which made a highly efficient DNA repair

mechanism indispensable.

With the combined advantages of all restoration mechan-

isms, the large majority of all eukaryotes maintained

meiosis–mixis cycles. In the evolutionary order of events,

repair of oxidative damage was the first step as a response to

endogenous ROS production by mitochondria, and later on,

by plastids, and this happens during prophase I of meiosis.

Indeed, prophase I of meiosis is the most indispensable phase

of sex [79]. Its repair function is indispensable because of oxi-

dative respiration, and later on, photosynthesis. Endogenous

ROS production became intertwined with complex multicellu-

larity and cell differentiation, and in multicellular organisms,

sex became thus even more important for selective elimination

of mutations and perhaps for resetting of DNA methylation

patterns. The selective advantages of having high-energy

metabolisms (oxidative respiration and water-dependent

photosynthesis) combined with multicellular tissue differen-

tiation require meiotic sex for maintaining the integrity of the

immortal germline. At every conceivable level, ROS thus have

had an enormous influence Qduring eukaryotic evolution.

Future research should focus on phylogenomic reconstruc-

tions of evolutionary history, physiology and reproductive

features of early eukaryotes. Experimental and biochemical

work with extant unicellular eukaryotes and asexual organ-

isms will help in understanding different functions of the

components of sex. Mathematical modelling needs to consider

regulatory complexity and the ubiquitous selective pressure of

oxidative damage. Sex cannot be understood with short-term

cost–gain calculations in extant organisms without consider-

ing long-term evolutionary histories.
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